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Critical thickness for interface misfit dislocation formation in two-dimensional materials
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In-plane heterostructures of two-dimensional (2D) materials form interface misfit dislocations to relieve lattice
mismatch strain, much like heterostructures of 3D materials. Here, using graphene-hexagonal boron nitride
(h-BN) as a model system, we consider interface misfit dislocations in 2D lateral heterostructures resting on a flat
support layer that prevents out-of-plane deformation. Using an accurate empirical interatomic potential, we carry
out a rigorous energetic analysis of the graphene/h-BN interface with 5-7 or 8-6 dislocation cores. We define
and extract critical thicknesses for the formation of an interface misfit dislocation in the heterostructure, for the
limiting cases when the h-BN or graphene domains are significantly different in size (equivalent to the classic
3D thin film critical thickness problem), and the intermediate case, where the h-BN and graphene domains are of
comparable size (equivalent to the classic 3D compliant substrate problem). This makes it possible to compare
the alternative dislocation core structures and to determine the resulting dislocation core energy in a continuum
analysis. It also reveals a design space where defect-free heterostructures can be grown.
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I. INTRODUCTION

Two-dimensional (2D) materials such as graphene have
the potential to revolutionize nanoelectronics [1], just as
silicon and other bulk (3D) semiconductor materials did in
microelectronics in recent decades. As in the case of 3D
materials, the promise of graphene and other 2D materials
rests on the possibility of designing heterostructures [2,3] in
which optoelectronic properties can be engineered through
control of energy band alignment [4], built-in fields, carrier
mobilities, etc. One class of 2D material heterostructures is
referred to as vertically aligned heterostructures and relies on
van der Waals stacking, for which the relative misorientation
of the sheet is found to be the key parameter. A second class
of 2D material heterostructures relies on lateral interfaces
and has been successfully grown in both the honeycomb
(i.e., hexagonal) [5] and the transition metal dichalcogenide
(TMDC) [6] families; this configuration consists of a 2D film
and a 2D substrate, resting on a support layer, as shown in
Fig. 1(a). Rapid progress has been made recently in fabricating
and characterizing this class of heterostructures, also known
as parallel-stitched materials [7]. As in 3D materials, the
success of such heterostructures requires engineering the strain
and associated interfacial defects, which can otherwise create
significant problems for resulting device properties.

The objective of the present work is to use an atomistic
framework to understand interface misfit dislocations in 2D
materials, unifying the understanding of core structure and
the role of the defects in relieving lattice mismatch strain in
2D lateral heterostructures. In order to compare to the 3D
case, we describe such in-plane heterostructures as consisting
of a 2D film and a 2D substrate, as shown in Fig. 1(a). The
2D substrate would describe the first deposited material on
a supporting metallic layer, while the 2D film would be the
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second deposited material, which would be expected to grow
from the island edge of the 2D substrate. For the sake of
simplicity the 2D film and the 2D substrate are described
hereafter as the film and the substrate and the supporting
metallic layer is referred to as the support.

We choose the graphene/h-BN system as a prototype for
such lateral heterostructures as it is simpler than TMDC
systems and has been grown on different supports [8–10]
since the pioneering work of Ci et al. [5]. Indeed different
supports will give rise to varying strain conditions due to
the degree of coherency between the heterostructure and the
support [11]; thus the interfacial strain relief will also change.
Finally, to the best of our knowledge, 2D misfit dislocations
have only been reported in the graphene/h-BN [10] system
while they are absent by definition in TMDC heterostructures
based on the same chalcogenides [2,6] and not observed in
mixed chalcogenide WSe2-MoS2 junctions [12,13].

II. RESULTS AND DISCUSSION

A. Superlattice configuration

We study the graphene/h-BN interface in several separate
cases using a superlattice structure shown in Figs. 1(b)
and 1(c). With this configuration it is possible to avoid edge
reconstruction, image forces, and stoichiometry issues arising
due to the presence of free surfaces [10]. Instead, it assumes
periodicity in the growth direction [y in Fig. 1(b)] resulting in
two nonequivalent graphene/h-BN interfaces. By symmetry,
this configuration is mechanically equivalent to a film with
a free surface growing on a substrate [where the symmetry
plane equivalent to the free surface is shown with the dotted
line in Fig. 1(c)]. The interfacial direction (x) is also periodic
with an interfacial length L ≈ 105 Å, or 42 unit cells, which
is equal to the expected average misfit dislocation spacing
along a fully relaxed graphene/h-BN heterointerface. The
choice of this unit cell size is justified by arguing that full
strain relief can be achieved by formation of one interface
misfit dislocation in the periodic unit cell. The system is
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FIG. 1. (a) Schematic of the 2D film, 2D substrate, and support.
(b) Coherent heterostructure supercell with length L, h-BN film
thickness tBN, and graphene substrate thickness tC. (c) Schematic
of the superlattice geometry, with dislocations each offset from the
interface by d . By symmetry, this geometry is equivalent to the
case of a thin film (with a free surface) growing on a substrate,
with film thickness tfilm and substrate thickness tsubstrate. (d), (e) Core
reconstructions for the case of a graphene film on an h-BN substrate
with 5-7 and 8-6 cores. The carbon atoms shown in green represent
the extra plane used to construct the dislocation. The dark green atom
is inserted into the 5-7 core to create the 8-6 core.

constrained against out-of-plane bending, as it would be if
it were in uniform contact with the growth support. The
supercells considered here remain rectangular and are analyzed
at varying film/substrate thicknesses in the y direction. The
dislocation cores are also assumed to manifest in the film
material. Classical potentials fitted [14] to the C-C, B-N, C-B,
and C-N bond lengths are used to describe the energy of
the atomistic supercell domain. In order to compare energies
of configurations with and without dislocations, we define a
defect formation energy that accounts for the actual number
of C-C or B-N atom pairs in the supercell. The details of the
defect formation energy analysis are presented in Appendix A.

Due to its smaller lattice parameter, when the graphene
film is forced to accommodate the strain associated with
an epitaxial relationship to an h-BN substrate, it does so
through the formation of an interface dislocation with the
characteristic 5-7 core [10,15] structure as shown in Fig. 1(d).
This structure can be realized by first forcing a fully strained

graphene layer into registry with the h-BN substrate and
then allowing relaxation through the insertion of an armchair
column of carbon atoms perpendicular to the interface as
depicted by the light green atoms. In the zigzag interface
orientation considered here, this is equivalent to the insertion
of a zigzag chain of carbon atoms at 60 degrees or 120
degrees relative to the interface. The difference between the
5-7 core structure and a 8-6 core structure [15], illustrated
in Figs. 1(d) and 1(e), is the removal or insertion of a single
carbon atom at the core, shown in dark green in Fig. 1(e). This
is equivalent to a vacancy or interstitial mediated dislocation
climb mechanism (see Fig. 4(a)). Conversely, when the h-BN
film is forced to accommodate the strain associated with an
epitaxial relationship to a graphene substrate, it also does so
through formation of an interface dislocation with equivalent
cores, the details of which are presented in Appendix B.

In the following, these film/substrate and core combinations
are first analyzed in the limit that the substrate is much
larger than the film thickness, with varying embedded core
distance, d, as shown in Fig. 1(c). The film is assumed to
fully accommodate the misfit strain by adopting the stress-free
lattice parameter of the substrate. We model a substrate layer
of finite thickness to represent the infinite substrate and to
capture the elastic behavior near the interface, but this case
can be understood to mimic film growth on an infinitely thick
substrate. After considering the two limiting cases of thin film
on thick substrate, we consider the more general case in which
the superlattice takes a lattice parameter between that of h-BN
and graphene. This case can be understood to mimic a more
realistic case where the mismatch strain is shared by the h-BN
and the graphene—the so-called compliant substrate case. The
total supercell thickness and interfacial length is allowed to
vary during minimization and is dictated by the film/substrate
thickness ratio. The core is positioned at the interface with an
embedded core distance d = 0 Å.

B. Strain relaxation as a function of dislocation core position

The results of the embedded dislocation core stability
analysis are shown in Fig. 2. In Fig. 2(a), we consider a
5-7 dislocation core, embedded at depth d in a graphene film
on a much thicker h-BN substrate. In Fig. 2(b), we consider
the 8-6 dislocation core in h-BN on a much thicker graphene
substrate. The other core and film/substrate considerations are
approached similarly and presented in Appendix C.

In the cases shown in Fig. 2, misfit strain is partially
accommodated in the y direction during minimization, while
the unit cell size parallel to the interface is fixed according
to substrate lattice parameter. The configuration is considered
to be energetically favorable when the formation energy with
the dislocation becomes less than the formation energy of an
equivalent sized coherent supercell, i.e., for negative values
of the dependent variable. The zero crossings for these curves
are summarized for the different film thicknesses and core
reconstructions in Fig. 2 [panels (c) and (d)], which shows the
maximum embedded core distance at which the dislocation can
still provide energy reduction. The film thickness (actually the
double thickness 2tC or 2tBN in the supercell configuration)
at which this maximum embedding distance is zero is
the critical thickness. This critical thickness corresponds to
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FIG. 2. (a) Embedded dislocation stability analysis of a C film
on a thick BN layer for the 5-7 dislocation core. (EDislo/atom) −
(ECoher/atom) < 0 represents the condition for which dislocation for-
mation is energetically favorable. (b) Embedded dislocation stability
analysis of an h-BN film on a thick C layer for the 8-6 dislocation
core. The other possible core and film/substrate combinations are
also considered but not shown. The dashed lines in (a) and (b) bound
the upper limit for the embedded core distance. An upper bound to
the kinetic critical thickness is found by extrapolating to the zero
crossings of these lines and is noted for each case in the figure. (c),
(d) Maximum embedded core distance for energy reduction, (c) for a
C film on a thick h-BN layer and (d) for an h-BN film on a thick C
layer. The thermodynamic critical thickness for a C film on a thick
h-BN substrate is interpolated as 41.7 Å for the 8-6 core and 35.0 Å
for the 5-7 core. The thermodynamic critical thickness for the h-BN
film on thick C is interpolated as 63.4 Å for the 8-6 core and 60.7 Å
for the 5-7 core.

the thermodynamic condition at which the energetic cost of
the dislocation is balanced by the strain relief it provides to
the system; this is equivalent to the well-known Matthews-
Blakeslee critical thickness in 3D film growth [16]. In each
film/substrate case, the 5-7 core is slightly favored over the 8-6
core. For a graphene film on an infinite h-BN substrate, the 5-7
and 8-6 cores have a tcrit of 18 Å and 21 Å, respectively. An
h-BN film grown on an infinite graphene substrate has a larger
tcrit of 30 Å and 32 Å for the 5-7 and 8-6 cores, respectively.

A second, alternative critical thickness can be deduced from
this analysis, and can be considered as an upper bound to a
kinetic limit, tKcrit. This limit is observed when, at the limit that
the embedded core distance reaches d ≈ tfilm, the system is
still able to reduce its energy relative to the coherent case; i.e.,
it is the film thickness above which it is always energetically
favorable to accommodate the insertion of a dislocation at the
free surface. In 3D thin film mechanics this limit corresponds
to the critical thickness for homogeneous nucleation of a misfit
dislocation half loop at a free surface. This limit is found by
extrapolating from the largest embedded core distances for a
given film thickness to the zero crossing, or the case for which
all points in the curve are below zero. The curves associated
with this extrapolation are denoted by the dashed lines in
Figs. 2(a) and 2(b). The tKcrit values from these dashed line zero
crossings are also shown. For a graphene film on an infinite
h-BN substrate, the formation of an 8-6 core (tKcrit = 620 Å)
is marginally favored over the 5-7 core (tKcrit = 626 Å) in the
kinetic growth limit. However, for an h-BN film on graphene,
the formation of a 5-7 core (tKcrit = 551 Å) is significantly
favored over the 8-6 core (tKcrit = 633 Å). These values are
much larger than the thermodynamic critical thickness, but are
less realistic, because they correspond to the extreme case of
perfect homogeneous dislocation nucleation at a free surface
and to the case in which dislocation cores are immobile after
the growth process—while the 8-6 core has been predicted to
be mobile relative to its 5-7 counterpart [17].

The critical thickness values computed so far all depend on
the assumption that the film thickness is much smaller than
the substrate thickness, but in some recent experimental work
on h-BN/graphene interfaces, the system is better described by
interfaces between h-BN and graphene domains of comparable
dimension. While precise dislocation core structures have yet
to be determined experimentally, moiré patterns reported in
recent experiments [10] are compatible with either 5-7 or 8-6
core structures. Furthermore, in these experiments there is
some evidence that dislocations may exist in configurations at
some small distance from the interface, and that there may be
elastic interactions with corners and facets along the interface.

C. Strain-balanced (compliant substrate) case

These observations, along with the possibility of partial
coherency between the film/substrate system and the support
layer, suggest that it is necessary to understand the critical
thickness condition for the intermediate strain-balanced case,
where neither the film nor the substrate is in a strain-free
condition. In the intermediate case, instead of h-BN fully
accommodating the strain associated with epitaxy on the
graphene substrate, or graphene fully accommodating the
strain associated with the h-BN substrate, one can expect
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that the system will relax to an intermediate lattice parameter
between that of h-BN and graphene.

This intermediate case can be shown to correspond to the
classic 3D compliant substrate critical thickness problem [18].
The critical thickness in the present case is determined by
balancing the work done by the full unrelaxed mismatch strain
Wm, the energetic cost of the dislocation due to the work
required to overcome the image forces W

Image
y and W

Image
x ,

and the energy of the dislocation Ecore inside the cutoff radius
r0, according to Wm + 2W

Image
y + 2W

Image
x + 2Ecore = 0. The

work done by the image forces is proportional to ln (α/r0),
where α is a function of the thickness ratio of the film and
substrate. (Additional details are provided in Appendix C.)
Thus, both Ecore and r0 can be considered as fitting parameters
in the continuum critical thickness theory. The same atomistic
supercell configuration, shown in Fig. 1, is used to compute
the atomistic total energy for comparison to the compliant
substrate continuum critical thickness criterion, by varying the
film/substrate thickness ratio; this calculation can then be used
to determine values for Ecore and r0. The supercell boundaries
remain periodic and rectangular, but the box size is allowed to
vary during minimization in both the interface (x) and growth
(y) directions. This allows the system to share the mismatch
strain between both the film and substrate. The same criterion
is used to distinguish energetically favorable configurations for
dislocation formation over a range of film/substrate thickness
values as detailed in Appendix C.

A full comparison between the calculated and theoretical
critical thickness criteria is then shown in Fig. 3. The elastic
moduli used in the continuum analysis are determined from the
interatomic potentials. The critical thickness from the contin-
uum theory is shown as a dashed or dotted line while the critical
thickness computed atomistically is shown with the symbols.
The primary horizontal axis is the log of the film/substrate
thickness ratio. For a particular film/substrate thickness ratio,
defect-free h-BN growth on a much thicker graphene substrate
can occur up to the condition plotted in blue; defect-free
graphene growth on a much thicker h-BN substrate can occur
up to the condition plotted in red. The distribution of mismatch
strain is represented using the two additional horizontal axes.
The central region along the x axis, where the strain is balanced
between the film and substrate, represents an interesting design
space for defect-free heterostructure growth, while the limiting
cases of film growth on substrates of infinite thickness (the
so-called Matthews-Blakeslee condition [16]) are shown at the
extreme values on the thickness ratio axis. Figure 3(a) shows
that the continuum and atomistic critical thickness values are in
reasonable agreement even when the free parameters Ecore and
r0 are chosen to be 0 eV and |b| (as shown by the solid lines),
respectively, as is typically the case in 3D critical thickness
theory.

Whether the dislocation is in graphene or in h-BN, the 5-7
core (shown with the five-sided symbols) costs the system less
energy to accommodate than the 8-6 core (shown with the
six-sided symbols), and thus leads to a lower observed critical
thickness. This trend is more pronounced in the graphene film
(as shown in red). When the dislocation is in an h-BN film
on a graphene substrate, however, the energetic cost of the
homopolar bond in the 5-7 case raises the energy that the
system must pay to accommodate the dislocation, almost to a

FIG. 3. Critical thickness of h-BN/graphene system, as a function
of the ratio of layer thicknesses (primary horizontal axis) and as a
function of the misfit strain in the C and h-BN layers (secondary
horizontal axes). At the left and right extremes on the horizontal axis,
the system consists of a thin layer on an infinitely thick substrate; at
the center, the system is approximately strain-balanced. The atomistic
results are plotted against the continuum theoretical results with (a)
cutoff radius r0 fitted via a nonlinear least squares method and Ecore =
0, and (b) both r0 and Ecore fitted using a nonlinear least squares
method. The case with cutoff radius r0 = |b| and Ecore = 0, used
in traditional 3D critical thickness theory, is depicted by the solid
lines. Five-sided symbols refer to the 5-7 core with dotted theoretical
curves; six-sided symbols refer to the 8-6 core with dashed theoretical
curves. The corresponding fitted values for the cutoff radius and core
energy are shown in the inset.

level equivalent to that of an 8-6 core (as shown in blue). Thus,
the preference that graphene shows for the 5-7 core over the
8-6 core, which corresponds to a critical thickness difference
of roughly 8 Å, nearly vanishes in h-BN, due to the effect of
stoichiometry at the core. This is consistent with experimental
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observations of heart-shaped moiré defects near and at the
graphene/h-BN interface [10].

The agreement between the continuum model and the
atomistic model is greatly improved by using a nonlinear
least squares curve fit to find values for r0 and Ecore. In
the first case, as shown in Fig. 3(a), the fitting procedure
is used to find r0, while leaving Ecore = 0. In the second
case, as shown in Fig. 3(b), values are found for both r0 and
Ecore. This process results in an even better fit between the
continuum and atomistic critical thicknesses. The determined
fitting parameters are summarized in Figs. 3(a) and 3(b).
Without fitting for a nonzero core energy, the best-fit cutoff
radius is found to be smaller than b (or r0 = 0.2b–0.46b),
and the error norm of the fit is larger than the cutoff radius
itself. With a nonzero core energy (of 13–25 eV), the overall
fit is better, and the best-fit cutoff radius is significantly larger
(r0 = 1.92b–3.76b); in this case the error norm is significantly
smaller than the fitted cutoff radius. Not surprisingly, there are
significant differences between the h-BN and graphene cases,
and between the 5-7 and 8-6 cores, illustrating the importance
of considering the detailed structure and energetics of the
dislocation cores in these 2D material lateral heterostructures.

III. SUMMARY AND CONCLUSIONS

In summary, we have examined the stability of graphene/h-
BN lateral heterostructures against formation of interface
misfit dislocations. We identify the classic thermodynamic
critical thickness as the smallest 2D-film thickness for which it
is energetically favorable to insert a full dislocation on the film
side of the interface—i.e., the condition at which the energy
gained by strain relief balances the energetic cost of inserting
the dislocation, including both the elastic self-energy and the
core energy. It is found that the graphene critical thickness is
18 Å for the 5-7 core and 21 Å for the 8-6 core, while the
h-BN critical thickness is 30 Å for the 5-7 core and 32 Å
for 8-6 core. Thus, the 8-6 core is energetically more costly
for both materials, but the difference between the 5-7 and
8-6 core energies is less for h-BN than for graphene, as one
would expect due to the energetic penalty associated with
homopolar bonding in h-BN. This trend is also observed in
the strain-balanced or compliant substrate critical thickness
analysis, where the system is allowed to relax to a lattice
parameter between that of bulk h-BN and bulk graphene.
It is shown that when the 2D film and 2D substrate are of
nearly equal thickness, the critical thickness is 50%–100%
greater than in the thick-substrate limiting cases. The atom-
istic critical thickness results fit the plane stress continuum
compliant substrate critical thickness results very accurately
with dislocation core cutoff radii of 8–9 Å and core energies
of 22–24 eV, depending on whether the core is of 5-7 or 8-6
type. The analysis has significant implications for the design
of defect-free lateral heterostructures of h-BN and graphene,
and may be extended to other 2D materials such as TMDC.
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APPENDIX A: COMPUTING THE FORMATION ENERGY

Classical interatomic potentials can be used to accurately
describe structural properties in h-BN/graphene systems.
Potentials such as Tersoff-Brenner [19–21], REBO [22],
AIREBO [23], and LCBOPII [24] are fitted according to
a combination of theoretically predicted or experimentally
observed criteria such as lattice constants/elastic moduli [25],
interatomic bond lengths [26], cohesive/defect energies [27],
and phonon dispersions [28,29]. However, in most cases the
potentials are parametrized for BN or graphene alone while a
reliable description of the intermixing among B-N-C species is
unavailable. In some cases BN is represented by a generic atom
that imitates the expected elastic behavior, in which case the
BN is treated as a monolithic material, without distinguishing
the separate B and N species [30]. In the present study a Tersoff
potential is used [14], which relies on a fitting procedure for
a more accurate description of B-C and N-C bonding based
on ab initio energetics, which is important for an accurate
description of the interface.

However, using LAMMPS [31] and this parametriza-
tion [14], the equilibrium lattice constants for h-BN and
graphene are found to be 2.498 Å and 2.492 Å, respectively.
This underestimates the lattice constant difference observed
experimentally [32] by 2% absolute. To more closely model the
experimental mismatch strain, Tersoff parameters that contain
units of length or inverse length are scaled proportionally with
their length dependence by the ratio of the parametrized and
experimentally observed lattice parameters. This procedure
preserves the energetics of the system and modifies only
length scales such that the new lattice constants for h-BN
and graphene are 2.52 Å and 2.46 Å, respectively.

To compare the relative energies between systems with and
without dislocations, an energy of formation approach is used.
The energy of formation, E, is defined as

E = Etot − (NCCECC + NBNEBN), (A1)

where NCC|BN is the number of C-C or B-N atom pairs in the
supercell, ECC|BN is the reference energy per C-C or B-N pair
in the bulk (unstrained) material, and Etot is the total potential
energy of the superlattice given by the Tersoff potential.

APPENDIX B: DISLOCATION CORE STRUCTURE
IN h-BN FILM

As an alternative to the dislocation core structures residing
in the graphene film as shown in Fig. 1, we also consider
the possibility that the core reconstructs the h-BN film in
either the 8-6 configuration or the 5-7 structure, as shown
in Fig. 4. The two possible core reconstructions are related
by a dislocation climb process, as shown in Fig. 4(a). First,
a fully strained h-BN layer is forced into registry with the
graphene substrate and then allowed to relax through removal
of four BN units perpendicular to the interface; this structure
is equivalent to a pair of 8-6 dislocation cores of opposing
sign. In order to minimize the total energy in the system, these
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FIG. 4. (a) Schematic showing several intermediate steps in the dislocation climb process through which dislocation cores move to the
interfaces to maximize strain relief. The inner material in (a) is h-BN, and the outer material is graphene. The background gray-scale contours
represent the minimum negative (light) and maximum positive (dark) hydrostatic virial stress components for each system. The value of nv

denotes the number of vacancies added (atoms removed) in order for the dislocations to climb to their respective positions. (b), (c) Simulated
moiré reconstructions of the final two systems on a Ru(0001) support. (d), (e) Core reconstructions near the interface for an h-BN film on a
graphene substrate with 5-7 and 8-6 cores.

dislocations move apart, via climb, and approach the upper
and lower interfaces. With each atom removed (or vacancy
created), the core structure alternates between an 8-6 and a 5-7
reconstruction, until the cores eventually reach the interface,
as shown in the final two configurations of Fig. 4(a). The
core reconstructions of these two defects shown in Figs. 4(d)
and 4(e) differ by the removal of two atoms near the core,
resulting in a small climb displacement. The overall stoi-
chiometry is preserved by having each film/substrate interface
terminated by a complementary boron/nitrogen-carbon pair,
which is necessary for the energy of formation analysis.
Locally, however, when the h-BN film forms the 5-7 core
reconstruction, it is forced to accommodate a homopolar bond
to close the 7-atom ring along the interface (respectively B-B
and N-N on each of the two interfaces).

When the film/substrate system is on a crystalline metal
support layer, such as Ru(0001), a moiré pattern is often
observed experimentally. Simulated moiré patterns for the final
configurations in Fig. 4(a) are shown in Figs. 4(b) and 4(c). The
patterns are obtained through a low-pass filtered convolution
of the film/substrate and support atoms as represented by
Gaussian distributions. The resulting patterns for each type of
core near the interface show the characteristic “heart-shaped”
pattern often observed experimentally [10]. The similarity
of these patterns for the 8-6 and 5-7 cores illustrates the
difficulty in experimentally identifying the precise dislocation
core structure in such systems.

APPENDIX C: STRAIN-BALANCED (COMPLIANT
SUBSTRATE) CASE

It can be readily shown that when the 2D-film and 2D-
substrate domains are of comparable thickness, the problem

is a variation of the so-called compliant substrate case [18],
in an ideal plane stress configuration, and where equilibrium
requires that the in-plane extensional stress in the two layers
is equal and opposite, so that

Mf tf εf = Mstsεs, (C1)

where M is bulk modulus, t is layer thickness, and ε is strain.
Thus, assuming the two layers have equal bulk modulus, a
strain balanced condition can be achieved if tBN = tC. In this
case the possible formation of a strain-relieving interface misfit
dislocation will depend on the layer thickness (or the period of
the superlattice), leading to the notion of a critical thickness,
as described below.

Strain compatibility between the layers is enforced, or εf −
εm = εs , and with Eq. (2),

εf = εm

tsMs

tsMs + tf Mf

(C2)

and

εs = −εm

tf Mf

tsMs + tf Mf

, (C3)

where εm is the lattice mismatch strain. The amount of energy
that may be fully relaxed by the dislocation or, equivalently,
the work associated with the full coherent strain field, is given
by

Wm = 2Msεstsb, (C4)

where b is the Burgers vector magnitude of the film material
with sign chosen such that εmb > 0. The cost associated
with introducing the dislocation into a periodic supercell with
variable length (L) and height (2ts + 2tf ) is then weighed
against this possible strain relaxation. The forces on one
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dislocation from its two half-space image forces in the growth
direction are given as

F (y)Image = μb2(1 + ν)

4π

[
1

2ts + 2tf − y
− 1

y

]
, (C5)

where y is the distance from the bottom of the film. The
elastic constants μ and ν are chosen based on a weighted linear
combination of film and substrate properties, such that μ for
example would be μ = μf [tf /(ts + tf )] + μs[ts/(ts + tf )].

The dislocation also experiences image interactions in the
interfacial direction, given by

F (x)Image = μb2(1 + ν)

4π

[
1

L − x
− 1

x

]
, (C6)

where x is the distance from the edge of the system. The
self-energy of the dislocation at the interface is the work done
in overcoming these image forces as the dislocation is moved
to the interface at the center of the unit cell such that

W Image
x = −

∫ L/2

r0

F (x)Imagedx

= μb2(1 + ν)

4π
ln

(
L

4r0

)
(C7)

and

W Image
y = −

∫ 2tf

r0

F (y)Imagedy

= μb2(1 + ν)

4π
ln

(
2ts tf

r0(ts + tf )

)
, (C8)

where r0 is the dislocation core cutoff radius inside which the
linear elastic theory breaks down. The condition of zero net
work gives the film thickness at which the dislocation cost is
overcome by elastic relaxation for a fixed substrate thickness,
such that

Wm + 2W Image
y + 2W Image

x + 2Ecore = 0, (C9)

where Ecore is the dislocation core energy contained within r0.
In continuum theory for 3D film-substrate systems, this core
energy is typically neglected. Here, calculating the system
energy atomistically, we are able to find an estimate for
this contribution to the energy balance. The same atomistic
supercell shown in Fig. 1 is used to compute the formation
energy of the interface misfit dislocation in the compliant
substrate case. In this case the lateral dimension of the unit cell
is allowed to vary so that the misfit strain can be shared by the

FIG. 5. Compliant substrate analysis for varying tC, tBN combi-
nations with core at interface (d = 0 Å). Film/substrate combina-
tions with EDislo/atom − ECoher/atom < 0 represent cases where
dislocation formation is energetically favorable. (a) h-BN film on
graphene substrate (8-6 core). (b) Graphene film on h-BN substrate
(7-5 core). Results for the h-BN film on graphene substrate (7-5 core)
and graphene film on h-BN substrate (8-6 core) are not shown here.

film and substrate layers, according to the modulus-weighted
ratios of their thicknesses, as given in Eqs. (C2) and (C3).

The results of this calculation are shown in Fig. 5. In
Fig. 5(a), the graphene layer is the nominal substrate, so
the dislocation is inserted at the interface on the h-BN side.
Figure 5(b) shows the case in which h-BN is the substrate
material, and the dislocation is inserted at the interface on
the graphene side. All combinations of layer double thickness
from approximately 10 Å to 350 Å are considered, for the 8-6
core in h-BN and the 5-7 core in graphene. Negative values
of the energy per atom difference represent cases in which
dislocation formation is energetically favorable; i.e., the zero
crossings form the critical thickness condition.
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